Handbook of Knowledge Representation pdf epub mobi txt 电子书 下载 2024


Handbook of Knowledge Representation

简体网页||繁体网页
Frank van Harmelen
Elsevier Science
2008-1-22
1034
USD 245.00
Hardcover
9780444522115

图书标签: 人工智能  知识表示  计算机  认知科学  认知  表示  机器学习  智能   


喜欢 Handbook of Knowledge Representation 的读者还喜欢




    点击这里下载
        


    想要找书就要到 笔趣阁图书下载中心
    立刻按 ctrl+D收藏本页
    你会得到大惊喜!!

    发表于2024-06-15

    Handbook of Knowledge Representation epub 下载 mobi 下载 pdf 下载 txt 电子书 下载 2024

    Handbook of Knowledge Representation epub 下载 mobi 下载 pdf 下载 txt 电子书 下载 2024

    Handbook of Knowledge Representation pdf epub mobi txt 电子书 下载 2024



    图书描述

    Contents

    Dedication v

    Preface vii

    Editors xi

    Contributors xiii

    Contents xv

    I General Methods in Knowledge Representation and

    Reasoning 1

    1 Knowledge Representation and Classical Logic 3

    Vladimir Lifschitz, Leora Morgenstern and David Plaisted

    1.1 Knowledge Representation and Classical Logic . . . . . . . . . . . . 3

    1.2 Syntax, Semantics and Natural Deduction . . . . . . . . . . . . . . . 4

    1.2.1 Propositional Logic . . . . . . . . . . . . . . . . . . . . . . . 4

    1.2.2 First-OrderLogic ........................ 8

    1.2.3 Second-Order Logic . . . . . . . . . . . . . . . . . . . . . . . 16

    1.3 Automated Theorem Proving . . . . . . . . . . . . . . . . . . . . . . 18

    1.3.1 Resolution in the Propositional Calculus . . . . . . . . . . . . 22

    1.3.2 First-OrderProofSystems ................... 25

    1.3.3 Equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

    1.3.4 Term Rewriting Systems . . . . . . . . . . . . . . . . . . . . 43

    1.3.5 Confluence and Termination Properties . . . . . . . . . . . . 46

    1.3.6 Equational Rewriting . . . . . . . . . . . . . . . . . . . . . . 50

    1.3.7 OtherLogics........................... 55

    1.4 Applications of Automated Theorem Provers . . . . . . . . . . . . . 58

    1.4.1 Applications Involving Human Intervention . . . . . . . . . . 59

    1.4.2 Non-Interactive KR Applications of Automated Theorem

    Provers.............................. 61

    1.4.3 Exploiting Structure . . . . . . . . . . . . . . . . . . . . . . . 64

    1.4.4 Prolog .............................. 65

    1.5 Suitability of Logic for Knowledge Representation . . . . . . . . . . 67

    1.5.1 Anti-logicist Arguments and Responses . . . . . . . . . . . . 67

    xvxvi Contents

    Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

    Bibliography .................................. 74

    2 Satisfiability Solvers 89

    Carla P. Gomes, Henry Kautz, Ashish Sabharwal and Bart Selman

    2.1 DefinitionsandNotation ........................ 91

    2.2 SAT Solver Technology—Complete Methods . . . . . . . . . . . . . 92

    2.2.1 The DPLL Procedure . . . . . . . . . . . . . . . . . . . . . . 92

    2.2.2 Key Features of Modern DPLL-Based SAT Solvers . . . . . 93

    2.2.3 Clause Learning and Iterative DPLL . . . . . . . . . . . . . . 95

    2.2.4 A Proof Complexity Perspective . . . . . . . . . . . . . . . . 100

    2.2.5 Symmetry Breaking . . . . . . . . . . . . . . . . . . . . . . . 104

    2.3 SAT Solver Technology—Incomplete Methods . . . . . . . . . . . . 107

    2.3.1 The Phase Transition Phenomenon in Random k-SAT .... 109

    2.3.2 A New Technique for Random k-SAT: Survey Propagation . 111

    2.4 Runtime Variance and Problem Structure . . . . . . . . . . . . . . . 112

    2.4.1 Fat and Heavy Tailed Behavior . . . . . . . . . . . . . . . . . 113

    2.4.2 Backdoors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

    2.4.3 Restarts.............................. 115

    2.5 Beyond SAT: Quantified Boolean Formulas and Model Counting . . 117

    2.5.1 QBFReasoning ......................... 117

    2.5.2 Model Counting . . . . . . . . . . . . . . . . . . . . . . . . . 120

    Bibliography .................................. 122

    3 Description Logics 135

    Franz Baader, Ian Horrocks and Ulrike Sattler

    3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

    3.2 ABasicDLanditsExtensions ..................... 139

    3.2.1 Syntax and Semantics of ALC ................. 140

    3.2.2 Important Inference Problems . . . . . . . . . . . . . . . . . 141

    3.2.3 Important Extensions to ALC ................. 142

    3.3 Relationships with other Formalisms . . . . . . . . . . . . . . . . . . 144

    3.3.1 DLs and Predicate Logic . . . . . . . . . . . . . . . . . . . . 144

    3.3.2 DLs and Modal Logic . . . . . . . . . . . . . . . . . . . . . . 145

    3.4 Tableau Based Reasoning Techniques . . . . . . . . . . . . . . . . . 146

    3.4.1 A Tableau Algorithm for ALC ................. 146

    3.4.2 Implementation and Optimization Techniques . . . . . . . . 150

    3.5 Complexity................................ 151

    3.5.1 ALC ABox Consistency is PSpace-complete . . . . . . . . . 151

    3.5.2 Adding General TBoxes Results in ExpTime-Hardness . . . 154

    3.5.3 The Effect of other Constructors . . . . . . . . . . . . . . . . 154

    3.6 Other Reasoning Techniques . . . . . . . . . . . . . . . . . . . . . . 155

    3.6.1 The Automata Based Approach . . . . . . . . . . . . . . . . 156

    3.6.2 Structural Approaches . . . . . . . . . . . . . . . . . . . . . . 161

    3.7 DLs in Ontology Language Applications . . . . . . . . . . . . . . . 166

    3.7.1 The OWL Ontology Language . . . . . . . . . . . . . . . . . 166

    3.7.2 OWL Tools and Applications . . . . . . . . . . . . . . . . . . 167Contents xvii

    3.8 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

    Bibliography .................................. 169

    4 Constraint Programming 181

    Francesca Rossi, Peter van Beek and TobyWalsh

    4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

    4.2 Constraint Propagation . . . . . . . . . . . . . . . . . . . . . . . . . 182

    4.2.1 Local Consistency . . . . . . . . . . . . . . . . . . . . . . . . 183

    4.2.2 Global Constraints . . . . . . . . . . . . . . . . . . . . . . . . 183

    4.3 Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

    4.3.1 Backtracking Search . . . . . . . . . . . . . . . . . . . . . . 184

    4.3.2 Local Search . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

    4.3.3 Hybrid Methods . . . . . . . . . . . . . . . . . . . . . . . . . 188

    4.4 Tractability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

    4.4.1 Tractable Constraint Languages . . . . . . . . . . . . . . . . 189

    4.4.2 Tractable Constraint Graphs . . . . . . . . . . . . . . . . . . 191

    4.5 Modeling................................. 191

    4.5.1 CP ∨¬ CP............................ 192

    4.5.2 Viewpoints............................ 192

    4.5.3 Symmetry ............................ 193

    4.6 Soft Constraints and Optimization . . . . . . . . . . . . . . . . . . . 193

    4.6.1 Modeling Soft Constraints . . . . . . . . . . . . . . . . . . . 194

    4.6.2 Searching for the Best Solution . . . . . . . . . . . . . . . . . 195

    4.6.3 Inference in Soft Constraints . . . . . . . . . . . . . . . . . . 195

    4.7 ConstraintLogicProgramming..................... 197

    4.7.1 LogicPrograms ......................... 197

    4.7.2 Constraint Logic Programs . . . . . . . . . . . . . . . . . . . 198

    4.7.3 LP and CLP Languages . . . . . . . . . . . . . . . . . . . . . 198

    4.7.4 Other Programming Paradigms . . . . . . . . . . . . . . . . . 199

    4.8 Beyond Finite Domains . . . . . . . . . . . . . . . . . . . . . . . . . 199

    4.8.1 Intervals ............................. 199

    4.8.2 TemporalProblems ....................... 200

    4.8.3 Sets and other Datatypes . . . . . . . . . . . . . . . . . . . . 200

    4.9 Distributed Constraint Programming . . . . . . . . . . . . . . . . . . 201

    4.10ApplicationAreas ............................ 202

    4.11 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

    Bibliography .................................. 203

    5 Conceptual Graphs 213

    John F. Sowa

    5.1 From Existential Graphs to Conceptual Graphs . . . . . . . . . . . . 213

    5.2 CommonLogic ............................. 217

    5.3 Reasoning with Graphs . . . . . . . . . . . . . . . . . . . . . . . . . 223

    5.4 Propositions, Situations, and Metalanguage . . . . . . . . . . . . . . 230

    5.5 ResearchExtensions........................... 233

    Bibliography .................................. 235xviii Contents

    6 Nonmonotonic Reasoning 239

    Gerhard Brewka, Ilkka Niemelä and Mirosław Truszczy´ nski

    6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

    Rules with exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . 240

    Theframeproblem ........................... 240

    About this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

    6.2 DefaultLogic .............................. 242

    6.2.1 Basic Definitions and Properties . . . . . . . . . . . . . . . . 242

    6.2.2 Computational Properties . . . . . . . . . . . . . . . . . . . . 246

    6.2.3 Normal Default Theories . . . . . . . . . . . . . . . . . . . . 249

    6.2.4 Closed-World Assumption and Normal Defaults . . . . . . . 250

    6.2.5 VariantsofDefaultLogic.................... 252

    6.3 Autoepistemic Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

    6.3.1 Preliminaries, Intuitions and Basic Results . . . . . . . . . . 253

    6.3.2 Computational Properties . . . . . . . . . . . . . . . . . . . . 258

    6.4 Circumscription ............................. 260

    6.4.1 Motivation............................ 260

    6.4.2 Defining Circumscription . . . . . . . . . . . . . . . . . . . . 261

    6.4.3 Semantics ............................ 263

    6.4.4 Computational Properties . . . . . . . . . . . . . . . . . . . . 264

    6.4.5 Variants.............................. 266

    6.5 Nonmonotonic Inference Relations . . . . . . . . . . . . . . . . . . . 267

    6.5.1 Semantic Specification of Inference Relations . . . . . . . . . 268

    6.5.2 Default Conditionals . . . . . . . . . . . . . . . . . . . . . . 270

    6.5.3 Discussion............................ 272

    6.6 Further Issues and Conclusion . . . . . . . . . . . . . . . . . . . . . 272

    6.6.1 Relating Default and Autoepistemic Logics . . . . . . . . . . 273

    6.6.2 Relating Default Logic and Circumscription . . . . . . . . . 275

    6.6.3 Further Approaches . . . . . . . . . . . . . . . . . . . . . . . 276

    Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

    Bibliography .................................. 277

    7 Answer Sets 285

    Michael Gelfond

    7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

    7.2 Syntax and Semantics of Answer Set Prolog . . . . . . . . . . . . . . 286

    7.3 Properties of Logic Programs . . . . . . . . . . . . . . . . . . . . . . 292

    7.3.1 Consistency of Logic Programs . . . . . . . . . . . . . . . . 292

    7.3.2 Reasoning Methods for Answer Set Prolog . . . . . . . . . . 295

    7.3.3 Properties of Entailment . . . . . . . . . . . . . . . . . . . . 297

    7.3.4 Relations between Programs . . . . . . . . . . . . . . . . . . 298

    7.4 A Simple Knowledge Base . . . . . . . . . . . . . . . . . . . . . . . 300

    7.5 Reasoning in Dynamic Domains . . . . . . . . . . . . . . . . . . . . 302

    7.6 Extensions of Answer Set Prolog . . . . . . . . . . . . . . . . . . . . 307

    7.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

    Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

    Bibliography .................................. 310Contents xix

    8 Belief Revision 317

    Pavlos Peppas

    8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

    8.2 Preliminaries............................... 318

    8.3 TheAGMParadigm........................... 318

    8.3.1 The AGM Postulates for Belief Revision . . . . . . . . . . . 319

    8.3.2 The AGM Postulates for Belief Contraction . . . . . . . . . . 320

    8.3.3 Selection Functions . . . . . . . . . . . . . . . . . . . . . . . 323

    8.3.4 Epistemic Entrenchment . . . . . . . . . . . . . . . . . . . . 325

    8.3.5 System of Spheres . . . . . . . . . . . . . . . . . . . . . . . . 327

    8.4 Belief Base Change . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

    8.4.1 Belief Base Change Operations . . . . . . . . . . . . . . . . . 331

    8.4.2 Belief Base Change Schemes . . . . . . . . . . . . . . . . . . 332

    8.5 Multiple Belief Change . . . . . . . . . . . . . . . . . . . . . . . . . 335

    8.5.1 Multiple Revision . . . . . . . . . . . . . . . . . . . . . . . . 336

    8.5.2 Multiple Contraction . . . . . . . . . . . . . . . . . . . . . . 338

    8.6 IteratedRevision............................. 340

    8.6.1 Iterated Revision with Enriched Epistemic Input . . . . . . . 340

    8.6.2 Iterated Revision with Simple Epistemic Input . . . . . . . . 343

    8.7 Non-PrioritizedRevision ........................ 346

    8.8 Belief Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

    8.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

    Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

    Bibliography .................................. 353

    9 Qualitative Modeling 361

    Kenneth D. Forbus

    9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

    9.1.1 KeyPrinciples.......................... 362

    9.1.2 Overview of Basic Qualitative Reasoning . . . . . . . . . . . 363

    9.2 Qualitative Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . 365

    9.2.1 Quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365

    9.2.2 Functions and Relationships . . . . . . . . . . . . . . . . . . 369

    9.3 Ontology................................. 371

    9.3.1 Component Ontologies . . . . . . . . . . . . . . . . . . . . . 372

    9.3.2 Process Ontologies . . . . . . . . . . . . . . . . . . . . . . . 373

    9.3.3 FieldOntologies......................... 374

    9.4 Causality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

    9.5 Compositional Modeling . . . . . . . . . . . . . . . . . . . . . . . . 376

    9.5.1 Model Formulation Algorithms . . . . . . . . . . . . . . . . . 378

    9.6 Qualitative States and Qualitative Simulation . . . . . . . . . . . . . 379

    9.7 Qualitative Spatial Reasoning . . . . . . . . . . . . . . . . . . . . . . 381

    9.7.1 Topological Representations . . . . . . . . . . . . . . . . . . 381

    9.7.2 Shape, Location, and Orientation Representations . . . . . . 382

    9.7.3 DiagrammaticReasoning.................... 382

    9.8 Qualitative Modeling Applications . . . . . . . . . . . . . . . . . . . 383xx Contents

    9.8.1 Automating or Assisting Professional Reasoning . . . . . . . 383

    9.8.2 Education . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384

    9.8.3 CognitiveModeling....................... 386

    9.9 FrontiersandResources......................... 387

    Bibliography .................................. 387

    10 Model-based Problem Solving 395

    Peter Struss

    10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

    10.2 Tasks.................................. 398

    10.2.1 Situation Assessment/Diagnosis . . . . . . . . . . . . . . 398

    10.2.2 Test Generation, Measurement Proposal, Diagnosability

    Analysis ........................... 399

    10.2.3 Design and Failure-Modes-and-Effects Analysis . . . . . 401

    10.2.4 Proposal of Remedial Actions (Repair, Reconfiguration,

    Recovery,Therapy) ..................... 402

    10.2.5 Ingredients of Model-based Problem Solving . . . . . . . 402

    10.3 Requirements on Modeling . . . . . . . . . . . . . . . . . . . . . . 403

    10.3.1 Behavior Prediction and Consistency Check . . . . . . . 404

    10.3.2 Validity of Behavior Modeling . . . . . . . . . . . . . . . 405

    10.3.3 Conceptual Modeling . . . . . . . . . . . . . . . . . . . . 405

    10.3.4 (Automated) Model Composition . . . . . . . . . . . . . 406

    10.3.5 Genericity . . . . . . . . . . . . . . . . . . . . . . . . . . 406

    10.3.6 Appropriate Granularity . . . . . . . . . . . . . . . . . . 407

    10.4 Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407

    10.4.1 Consistency-based Diagnosis with Component-oriented

    Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408

    10.4.2 Computation of Diagnoses . . . . . . . . . . . . . . . . . 418

    10.4.3 Solution Scope and Limitations of Component-Oriented

    Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . 422

    10.4.4 Diagnosis across Time . . . . . . . . . . . . . . . . . . . 423

    10.4.5 Abductive Diagnosis . . . . . . . . . . . . . . . . . . . . 431

    10.4.6 Process-Oriented Diagnosis . . . . . . . . . . . . . . . . 434

    10.4.7 Model-based Diagnosis in Control Engineering . . . . . . 438

    10.5 Test and Measurement Proposal, Diagnosability Analysis . . . . . 438

    10.5.1 Test Generation . . . . . . . . . . . . . . . . . . . . . . . 439

    10.5.2 Entropy-based Test Selection . . . . . . . . . . . . . . . . 444

    10.5.3 ProbeSelection ....................... 445

    10.5.4 Diagnosability Analysis . . . . . . . . . . . . . . . . . . . 446

    10.6 Remedy Proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . 446

    10.6.1 Integration of Diagnosis and Remedy Actions . . . . . . 448

    10.6.2 Component-oriented Reconfiguration . . . . . . . . . . . 450

    10.6.3 Process-oriented Therapy Proposal . . . . . . . . . . . . 453

    10.7 OtherTasks .............................. 454

    10.7.1 Configuration and Design . . . . . . . . . . . . . . . . . . 454

    10.7.2 Failure-Modes-and-Effects Analysis . . . . . . . . . . . . 456

    10.7.3 Debugging and Testing of Software . . . . . . . . . . . . 456Contents xxi

    10.8 State and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . 458

    Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460

    Bibliography ................................. 460

    11 Bayesian Networks 467

    Adnan Darwiche

    11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467

    11.2 Syntax and Semantics of Bayesian Networks . . . . . . . . . . . . 468

    11.2.1 Notational Conventions . . . . . . . . . . . . . . . . . . . 468

    11.2.2 Probabilistic Beliefs . . . . . . . . . . . . . . . . . . . . . 469

    11.2.3 Bayesian Networks . . . . . . . . . . . . . . . . . . . . . 470

    11.2.4 Structured Representations of CPTs . . . . . . . . . . . . 471

    11.2.5 Reasoning about Independence . . . . . . . . . . . . . . . 471

    11.2.6 Dynamic Bayesian Networks . . . . . . . . . . . . . . . . 472

    11.3 Exact Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473

    11.3.1 Structure-Based Algorithms . . . . . . . . . . . . . . . . 474

    11.3.2 Inference with Local (Parametric) Structure . . . . . . . . 479

    11.3.3 Solving MAP and MPE by Search . . . . . . . . . . . . . 480

    11.3.4 Compiling Bayesian Networks . . . . . . . . . . . . . . . 481

    11.3.5 Inference by Reduction to Logic . . . . . . . . . . . . . . 482

    11.3.6 Additional Inference Techniques . . . . . . . . . . . . . . 484

    11.4 Approximate Inference . . . . . . . . . . . . . . . . . . . . . . . . 485

    11.4.1 Inference by Stochastic Sampling . . . . . . . . . . . . . 485

    11.4.2 Inference as Optimization . . . . . . . . . . . . . . . . . 486

    11.5 Constructing Bayesian Networks . . . . . . . . . . . . . . . . . . 489

    11.5.1 Knowledge Engineering . . . . . . . . . . . . . . . . . . 489

    11.5.2 High-Level Specifications . . . . . . . . . . . . . . . . . 490

    11.5.3 Learning Bayesian Networks . . . . . . . . . . . . . . . . 493

    11.6 Causality and Intervention . . . . . . . . . . . . . . . . . . . . . . 497

    Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498

    Bibliography ................................. 499

    II Classes of Knowledge and Specialized Representations 511

    12 Temporal Representation and Reasoning 513

    Michael Fisher

    12.1 TemporalStructures.......................... 514

    12.1.1 InstantsandDurations ................... 514

    12.1.2 From Discreteness to Density . . . . . . . . . . . . . . . 515

    12.1.3 Granularity Hierarchies . . . . . . . . . . . . . . . . . . . 516

    12.1.4 TemporalOrganisation ................... 517

    12.1.5 MovinginRealTime .................... 517

    12.1.6 Intervals ........................... 518

    12.2 Temporal Language . . . . . . . . . . . . . . . . . . . . . . . . . . 520

    12.2.1 Modal Temporal Logic . . . . . . . . . . . . . . . . . . . 520

    12.2.2 BacktotheFuture...................... 521

    12.2.3 Temporal Arguments and Reified Temporal Logics . . . . 521xxii Contents

    12.2.4 Operators over Non-discrete Models . . . . . . . . . . . . 522

    12.2.5 Intervals ........................... 523

    12.2.6 Real-Time and Hybrid Temporal Languages . . . . . . . 524

    12.2.7 Quantification........................ 525

    12.2.8 Hybrid Temporal Logic and the Concept of “now” . . . . 528

    12.3 TemporalReasoning ......................... 528

    12.3.1 ProofSystems........................ 529

    12.3.2 Automated Deduction . . . . . . . . . . . . . . . . . . . . 529

    12.4 Applications.............................. 530

    12.4.1 Natural Language . . . . . . . . . . . . . . . . . . . . . . 530

    12.4.2 Reactive System Specification . . . . . . . . . . . . . . . 531

    12.4.3 Theorem-Proving . . . . . . . . . . . . . . . . . . . . . . 532

    12.4.4 Model Checking . . . . . . . . . . . . . . . . . . . . . . . 532

    12.4.5 PSL/Sugar .......................... 534

    12.4.6 Temporal Description Logics . . . . . . . . . . . . . . . . 534

    12.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 535

    Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535

    Bibliography ................................. 535

    13 Qualitative Spatial Representation and Reasoning 551

    Anthony G. Cohn and Jochen Renz

    13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551

    13.1.1 What is Qualitative Spatial Reasoning? . . . . . . . . . . 551

    13.1.2 Applications of Qualitative Spatial Reasoning . . . . . . 553

    13.2 Aspects of Qualitative Spatial Representation . . . . . . . . . . . . 554

    13.2.1 Ontology........................... 554

    13.2.2 SpatialRelations ...................... 556

    13.2.3 Mereology.......................... 557

    13.2.4 Mereotopology . . . . . . . . . . . . . . . . . . . . . . . 557

    13.2.5 Between Mereotopology and Fully Metric Spatial Repre-

    sentation........................... 566

    13.2.6 Mereogeometry . . . . . . . . . . . . . . . . . . . . . . . 570

    13.2.7 Spatial Vagueness . . . . . . . . . . . . . . . . . . . . . . 571

    13.3 SpatialReasoning........................... 572

    13.3.1 Deduction . . . . . . . . . . . . . . . . . . . . . . . . . . 574

    13.3.2 Composition . . . . . . . . . . . . . . . . . . . . . . . . . 575

    13.3.3 Constraint-based Spatial Reasoning . . . . . . . . . . . . 576

    13.3.4 Finding Efficient Reasoning Algorithms . . . . . . . . . . 578

    13.3.5 Planar Realizability . . . . . . . . . . . . . . . . . . . . . 581

    13.4 Reasoning about Spatial Change . . . . . . . . . . . . . . . . . . . 581

    13.5 CognitiveValidity........................... 582

    13.6 FinalRemarks............................. 583

    Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584

    Bibliography ................................. 584Contents xxiii

    14 Physical Reasoning 597

    Ernest Davis

    14.1 Architectures ............................. 600

    14.1.1 Component Analysis . . . . . . . . . . . . . . . . . . . . 600

    14.1.2 Process Model . . . . . . . . . . . . . . . . . . . . . . . . 601

    14.2 Domain Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . 602

    14.2.1 Rigid Object Kinematics . . . . . . . . . . . . . . . . . . 603

    14.2.2 Rigid Object Dynamics . . . . . . . . . . . . . . . . . . . 605

    14.2.3 Liquids............................ 608

    14.3 Abstraction and Multiple Models . . . . . . . . . . . . . . . . . . 611

    14.4 Historical and Bibliographical . . . . . . . . . . . . . . . . . . . . 614

    14.4.1 Logic-based Representations . . . . . . . . . . . . . . . . 614

    14.4.2 Solid Objects: Kinematics . . . . . . . . . . . . . . . . . 615

    14.4.3 Solid Object Dynamics . . . . . . . . . . . . . . . . . . . 616

    14.4.4 Abstraction and Multiple Models . . . . . . . . . . . . . 616

    14.4.5 Other............................. 616

    14.4.6 Books . . . . . . . . . . . . . . . . . . . . . . . . . . . . 617

    Bibliography ................................. 618

    15 Reasoning about Knowledge and Belief 621

    Yoram Moses

    15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621

    15.2 The Possible Worlds Model . . . . . . . . . . . . . . . . . . . . . 622

    15.2.1 A Language for Knowledge and Belief . . . . . . . . . . 622

    15.3 Properties of Knowledge . . . . . . . . . . . . . . . . . . . . . . . 626

    15.4 The Knowledge of Groups . . . . . . . . . . . . . . . . . . . . . . 628

    15.4.1 Common Knowledge . . . . . . . . . . . . . . . . . . . . 629

    15.4.2 Distributed Knowledge . . . . . . . . . . . . . . . . . . . 632

    15.5 RunsandSystems........................... 633

    15.6 AddingTime ............................. 635

    15.6.1 Common Knowledge and Time . . . . . . . . . . . . . . 636

    15.7 Knowledge-based Behaviors . . . . . . . . . . . . . . . . . . . . . 637

    15.7.1 Contexts and Protocols . . . . . . . . . . . . . . . . . . . 637

    15.7.2 Knowledge-based Programs . . . . . . . . . . . . . . . . 639

    15.7.3 A Subtle kb Program . . . . . . . . . . . . . . . . . . . . 641

    15.8 Beyond Square One . . . . . . . . . . . . . . . . . . . . . . . . . . 643

    15.9 How to Reason about Knowledge and Belief . . . . . . . . . . . . 644

    15.9.1 Concluding Remark . . . . . . . . . . . . . . . . . . . . . 645

    Bibliography ................................. 645

    Further reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647

    16 Situation Calculus 649

    Fangzhen Lin

    16.1 Axiomatizations............................ 650

    16.2 The Frame, the Ramification and the Qualification Problems . . . 652

    16.2.1 The Frame Problem—Reiter’s Solution . . . . . . . . . . 654

    16.2.2 The Ramification Problem and Lin’s Solution . . . . . . . 657xxiv Contents

    16.2.3 The Qualification Problem . . . . . . . . . . . . . . . . . 660

    16.3 Reiter’s Foundational Axioms and Basic Action Theories . . . . . 661

    16.4 Applications.............................. 665

    16.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 667

    Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 667

    Bibliography ................................. 667

    17 Event Calculus 671

    Erik T. Mueller

    17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671

    17.2 Versions of the Event Calculus . . . . . . . . . . . . . . . . . . . . 672

    17.2.1 Original Event Calculus (OEC) . . . . . . . . . . . . . . 672

    17.2.2 Simplified Event Calculus (SEC) . . . . . . . . . . . . . . 674

    17.2.3 Basic Event Calculus (BEC) . . . . . . . . . . . . . . . . 676

    17.2.4 EventCalculus(EC) .................... 679

    17.2.5 Discrete Event Calculus (DEC) . . . . . . . . . . . . . . 681

    17.2.6 Equivalence of DEC and EC . . . . . . . . . . . . . . . . 683

    17.2.7 OtherVersions........................ 683

    17.3 Relationship to other Formalisms . . . . . . . . . . . . . . . . . . 684

    17.4 DefaultReasoning .......................... 684

    17.4.1 Circumscription....................... 684

    17.4.2 Computing Circumscription . . . . . . . . . . . . . . . . 685

    17.4.3 HistoricalNote ....................... 686

    17.4.4 NegationasFailure ..................... 687

    17.5 Event Calculus Knowledge Representation . . . . . . . . . . . . . 687

    17.5.1 Parameters.......................... 687

    17.5.2 EventEffects ........................ 688

    17.5.3 Preconditions . . . . . . . . . . . . . . . . . . . . . . . . 689

    17.5.4 StateConstraints ...................... 689

    17.5.5 Concurrent Events . . . . . . . . . . . . . . . . . . . . . . 690

    17.5.6 Triggered Events . . . . . . . . . . . . . . . . . . . . . . 691

    17.5.7 Continuous Change . . . . . . . . . . . . . . . . . . . . . 692

    17.5.8 Nondeterministic Effects . . . . . . . . . . . . . . . . . . 693

    17.5.9 IndirectEffects ....................... 694

    17.5.10 Partially Ordered Events . . . . . . . . . . . . . . . . . . 696

    17.6 Action Language E .......................... 697

    17.7 Automated Event Calculus Reasoning . . . . . . . . . . . . . . . . 699

    17.7.1 Prolog ............................ 699

    17.7.2 Answer Set Programming . . . . . . . . . . . . . . . . . 700

    17.7.3 Satisfiability (SAT) Solving . . . . . . . . . . . . . . . . 700

    17.7.4 First-Order Logic Automated Theorem Proving . . . . . 700

    17.8 Applications of the Event Calculus . . . . . . . . . . . . . . . . . 700

    Bibliography ................................. 701

    18 Temporal Action Logics 709

    Patrick Doherty and Jonas Kvarnström

    18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 709Contents xxv

    18.1.1 PMONandTAL...................... 710

    18.1.2 PreviousWork ....................... 711

    18.1.3 Chapter Structure . . . . . . . . . . . . . . . . . . . . . 713

    18.2 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 713

    18.3 TALNarratives ............................ 716

    18.3.1 The Russian Airplane Hijack Scenario . . . . . . . . . . 717

    18.3.2 Narrative Background Specification . . . . . . . . . . . 718

    18.3.3 Narrative Specification . . . . . . . . . . . . . . . . . . 723

    18.4 The Relation Between the TAL Languages L(ND) and L(FL) . . 724

    18.5 The TAL Surface Language L(ND) ................. 725

    18.5.1 Sorts, Terms and Variables . . . . . . . . . . . . . . . . 725

    18.5.2 Formulas .......................... 726

    18.5.3 Statements ......................... 727

    18.6 The TAL Base Language L(FL) ................... 728

    18.6.1 Translation from L(ND) to L(FL) ............ 728

    18.7 CircumscriptionandTAL....................... 730

    18.8 Representing Ramifications in TAL . . . . . . . . . . . . . . . . . 735

    18.9 Representing Qualifications in TAL . . . . . . . . . . . . . . . . . 737

    18.9.1 Enabling Fluents . . . . . . . . . . . . . . . . . . . . . . 738

    18.9.2 StrongQualification.................... 740

    18.9.3 WeakQualification..................... 740

    18.9.4 Qualification: Not Only For Actions . . . . . . . . . . . 741

    18.9.5 Ramifications as Qualifications . . . . . . . . . . . . . . 742

    18.10ActionExpressivityinTAL ..................... 742

    18.11 Concurrent Actions in TAL . . . . . . . . . . . . . . . . . . . . . . 744

    18.11.1 Independent Concurrent Actions . . . . . . . . . . . . . 744

    18.11.2 Interacting Concurrent Actions . . . . . . . . . . . . . . 745

    18.11.3 LawsofInteraction .................... 745

    18.12 An Application of TAL: TALplanner . . . . . . . . . . . . . . . . 747

    18.13Summary ............................... 752

    Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 752

    Bibliography ................................. 753

    19 Nonmonotonic Causal Logic 759

    Hudson Turner

    19.1 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762

    19.1.1 Finite Domain Propositional Logic . . . . . . . . . . . . 762

    19.1.2 Causal Theories . . . . . . . . . . . . . . . . . . . . . . 763

    19.2 Strong Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . 765

    19.3 Completion .............................. 766

    19.4 Expressiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 768

    19.4.1 Nondeterminism: Coin Tossing . . . . . . . . . . . . . . 768

    19.4.2 Implied Action Preconditions: Moving an Object . . . . 768

    19.4.3 Things that Change by Themselves: Falling Dominos . 769

    19.4.4 Things that Tend to Change by Themselves: Pendulum . 769

    19.5 High-Level Action Language C+ .................. 770

    19.6 Relationship to Default Logic . . . . . . . . . . . . . . . . . . . . 771xxvi Contents

    19.7 Causal Theories in Higher-Order Classical Logic . . . . . . . . . . 772

    19.8 ALogicofUniversalCausation ................... 773

    Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 774

    Bibliography ................................. 774

    III Knowledge Representation in Applications 777

    20 Knowledge Representation and Question Answering 779

    Marcello Balduccini, Chitta Baral and Yuliya Lierler

    20.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 779

    20.1.1 Role of Knowledge Representation and Reasoning in QA 780

    20.1.2 Architectural Overview of QA Systems Using Knowl-

    edge Representation and Reasoning . . . . . . . . . . . 782

    20.2 From English to Logical Theories . . . . . . . . . . . . . . . . . . 783

    20.3 The COGEX Logic Prover of the LCC QA System . . . . . . . . 790

    20.4 Extracting Relevant Facts from Logical Theories and its Use in the

    DD QA System about Dynamic Domains and Trips . . . . . . . . 792

    20.4.1 The Overall Architecture of the DD System . . . . . . . 793

    20.4.2 From Logic Forms to QSR Facts: An Illustration . . . . 794

    20.4.3 OSR: From QSR Relations to Domain Relations . . . . 796

    20.4.4 An Early Travel Module of the DD System . . . . . . . 798

    20.4.5 Other Enhancements to the Travel Module . . . . . . . . 802

    20.5 From Natural Language to Relevant Facts in the ASU QA System 803

    20.6 Nutcracker—System for Recognizing Textual Entailment . . . . . 806

    20.7 Mueller’s Story Understanding System . . . . . . . . . . . . . . . 810

    20.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 813

    Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 815

    Bibliography ................................. 815

    21 The SemanticWeb:Webizing Knowledge Representation 821

    Jim Hendler and Frank van Harmelen

    21.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 821

    21.2 The Semantic Web Today . . . . . . . . . . . . . . . . . . . . . . 823

    21.3 Semantic Web KR Language Design . . . . . . . . . . . . . . . . 826

    21.3

    Handbook of Knowledge Representation 下载 mobi epub pdf txt 电子书

    著者简介


    图书目录


    Handbook of Knowledge Representation pdf epub mobi txt 电子书 下载
    想要找书就要到 笔趣阁图书下载中心
    立刻按 ctrl+D收藏本页
    你会得到大惊喜!!

    用户评价

    评分

    评分

    评分

    评分

    评分

    读后感

    评分

    评分

    评分

    评分

    评分

    类似图书 点击查看全场最低价

    Handbook of Knowledge Representation pdf epub mobi txt 电子书 下载 2024


    分享链接









    相关图书




    本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度googlebingsogou

    友情链接

    © 2024 twxs8.cc All Rights Reserved. 笔趣阁图书下载中心 版权所有