机器学习 pdf epub mobi txt 电子书 下载 2024


机器学习

简体网页||繁体网页
周志华
清华大学出版社
2016-1-1
425
88.00元
平装
9787302423287

图书标签: 机器学习  人工智能  数据挖掘  计算机  数据分析  MachineLearning  计算机科学  AI   


喜欢 机器学习 的读者还喜欢




    点击这里下载
        


    想要找书就要到 笔趣阁图书下载中心
    立刻按 ctrl+D收藏本页
    你会得到大惊喜!!

    发表于2024-06-15

    机器学习 epub 下载 mobi 下载 pdf 下载 txt 电子书 下载 2024

    机器学习 epub 下载 mobi 下载 pdf 下载 txt 电子书 下载 2024

    机器学习 pdf epub mobi txt 电子书 下载 2024



    图书描述

    机器学习是计算机科学与人工智能的重要分支领域. 本书作为该领域的入门教材,在内容上尽可能涵盖机器学习基础知识的各方面。 为了使尽可能多的读者通过本书对机器学习有所了解, 作者试图尽可能少地使用数学知识. 然而, 少量的概率、统计、代数、优化、逻辑知识似乎不可避免. 因此, 本书更适合大学三年级以上的理工科本科生和研究生, 以及具有类似背景的对机器学 习感兴趣的人士. 为方便读者, 本书附录给出了一些相关数学基础知识简介.

    全书共16 章,大致分为3 个部分:第1 部分(第1~3 章)介绍机器学习的基础知识;第2 部分(第4~10 章)讨论一些经典而常用的机器学习方法(决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习);第3 部分(第11~16 章)为进阶知识,内容涉及特征选择与稀疏学习、计算学习理论、半监督学习、概率图模型、规则学习以及强化学习等.前3章之外的后续各章均相对独立, 读者可根据自己的兴趣和时间情况选择使用. 根据课时情况, 一个学期的本科生课程可考虑讲授前9章或前10章; 研究生课程则不妨使用全书.

    书中除第1章外, 每章都给出了十道习题. 有的习题是帮助读者巩固本章学习, 有的是为了引导读者扩展相关知识. 一学期的一般课程可使用这些习题, 再辅以两到三个针对具体数据集的大作业. 带星号的习题则有相当难度, 有些并无现成答案, 谨供富有进取心的读者启发思考.

    本书可作为高等院校计算机、自动化及相关专业的本科生或研究生教材,也可供对机器学习感兴趣的研究人员和工程技术人员阅读参考。

    机器学习 下载 mobi epub pdf txt 电子书

    著者简介

    周志华,南京大学教授,计算机科学与技术系副主任,软件新技术国家重点实验室常务副主任,机器学习与数据挖掘研究所(LAMDA)所长,校、系学术委员会委员;ACM杰出科学家,IEEE Fellow,IAPR Fellow,中国计算机学会会士;长江学者特聘教授,国家杰出青年基金获得者。2007年创建南京大学机器学习与数据挖掘研究所(LAMDA),2010年11月任软件新技术国家重点实验室常务副主任,2013年5月任计算机系副主任。


    图书目录


    机器学习 pdf epub mobi txt 电子书 下载
    想要找书就要到 笔趣阁图书下载中心
    立刻按 ctrl+D收藏本页
    你会得到大惊喜!!

    用户评价

    评分

    作为教材其实需要具备三个条件:印刷排版好,语言表达好,逻辑思路好。从这三点来说,这本书都完胜李航教授的《统计学习方法》,是一本非常值得推荐给机器学习入门者梳理知识以及机器学习从业者温故知新的书。希望周老师的下本书可以增加一些自己对于模型本身的思考和理解,那一定会更受欢迎。

    评分

    机器学习是达到人工智能的手段,而非人工智能本身。

    评分

    说适合入门,通俗易懂的,都是神仙吧?=͟͟͞͞ʕ•̫͡•ʔ=͟͟͞͞ʕ•̫͡•ʔ=͟͟͞͞ʕ•̫͡•ʔ

    评分

    这是一本可以让你读下去,学下去的入门好书

    评分

    机器学习是达到人工智能的手段,而非人工智能本身。

    读后感

    评分

    覆盖面没话说,也对一些知识有了初步的理解。 但说实话因为覆盖面比较广,一些推导就省略了不少,若能减少覆盖面,集中讲解几个算法,就更好了。 比如CRF,HMM只有两个子章节,导致看不太懂。 个人比较喜欢看完整的推导加十分详细的讲解。 总之就是一些地方能再详细讲解下就更...  

    评分

    注意,这是一本“教科书”,所以其中有一些“不足”也就好理解了。 书本身没有很厚,看起来不至于压力很大。毕竟是“教科书”,每一章只有短短的几十页,结合课程用来教学是不错,但自学只看这本书估计有点不太够,可以结合coursera上Andrew Ng和林轩田的课来使用,要是这本书...  

    评分

    前前后后花了一个学期时间才基本读完一遍,相对于刚拿到书时,读下来对这本书的喜爱不减。 首先,过于简略不能成为给这本书差评的理由。前言指出了这本书的定位是教科书,第十版印刷时增加了一些使用说明,作者表示作为一学期的教材,各章篇幅进行了仔细考量,避免每堂...  

    评分

    前前后后花了一个学期时间才基本读完一遍,相对于刚拿到书时,读下来对这本书的喜爱不减。 首先,过于简略不能成为给这本书差评的理由。前言指出了这本书的定位是教科书,第十版印刷时增加了一些使用说明,作者表示作为一学期的教材,各章篇幅进行了仔细考量,避免每堂...  

    评分

    大致翻了下,目前详细看了第8章集成学习,和前5章。感觉还不错,不由得拿李航的书来比较。(只谈谈我目前看到过的几点,仅供参考) ①内容方面,李的书要少于周的书,周写的内容更多一些。 ②由于只看了第八章,两者关于adaboost的公式讲解都差不多,但是李航的书有例题,一步...  

    类似图书 点击查看全场最低价

    机器学习 pdf epub mobi txt 电子书 下载 2024


    分享链接









    相关图书




    本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度googlebingsogou

    友情链接

    © 2024 twxs8.cc All Rights Reserved. 笔趣阁图书下载中心 版权所有