图书标签: 数据挖掘 计算机 机器学习 Data Coursera CS 数据分析 软件工程
发表于2024-06-24
Mining of Massive Datasets pdf epub mobi txt 电子书 下载 2024
Written by leading authorities in database and Web technologies, this book is essential reading for students and practitioners alike. The popularity of the Web and Internet commerce provides many extremely large datasets from which information can be gleaned by data mining. This book focuses on practical algorithms that have been used to solve key problems in data mining and can be applied successfully to even the largest datasets. It begins with a discussion of the map-reduce framework, an important tool for parallelizing algorithms automatically. The authors explain the tricks of locality-sensitive hashing and stream processing algorithms for mining data that arrives too fast for exhaustive processing. Other chapters cover the PageRank idea and related tricks for organizing the Web, the problems of finding frequent itemsets and clustering. This second edition includes new and extended coverage on social networks, machine learning and dimensionality reduction.
Jure Leskovec is Assistant Professor of Computer Science at Stanford University. His research focuses on mining large social and information networks. Problems he investigates are motivated by large scale data, the Web and on-line media. This research has won several awards including a Microsoft Research Faculty Fellowship, the Alfred P. Sloan Fellowship, Okawa Foundation Fellowship, and numerous best paper awards. His research has also been featured in popular press outlets such as the New York Times, the Wall Street Journal, the Washington Post, MIT Technology Review, NBC, BBC, CBC and Wired. Leskovec has also authored the Stanford Network Analysis Platform (SNAP, http://snap.stanford.edu), a general purpose network analysis and graph mining library that easily scales to massive networks with hundreds of millions of nodes and billions of edges. You can follow him on Twitter at @jure.
下学期课程参考textbook,听说professor还不错,打算好好学一下这门课
评分内容不错,但作为技术向的书有些浮于表面。
评分内容不错,但作为技术向的书有些浮于表面。
评分bug非常之多, 还找不到地方提交, 读起来极度痛苦, 前看后忘, 也许里面的算法本质上就是这样, bottom line至少近15年最新的论文成果被这么串讲一下, 本科生也能看懂
评分内容不错,但作为技术向的书有些浮于表面。
看到开篇的两个例子,一个是地图聚类分析伦敦病毒问题,另一个是概率统计的例子。对本书还挺有期望。结果翻到第三章开始,这。。 尼玛整本书就是个目录啊。全书结构如下:知识点,摘要,奇葩的例子,习题。 然后另一个知识点,知识点,识点。。 如果为了平时聊天增加些谈资偶...
评分内容是算法分析应该有的套路, 对于Correctness, Running Time, Storage的证明; 讲得很细, 一个星期要讲3个算法, 看懂以后全部忘光大概率要发生. 要是能多给些直觉解释就好了. Ullman的表达绝对是有问题的, 谁不承认谁就是不客观, 常常一句话我要琢磨2个小时, 比如DGIM算法有一...
评分看有同学说是 stanford的入门课程,按理说应该不是太难。作为初学者来说,本书翻译的实在不敢恭维,看了50多页是一头雾水,很多话实在是晦涩难懂。本书作用入门级课程来说,基本上涵盖了数据挖掘的各个大类,如果想细致研究某个领域的大拿就不用看了
评分 评分看有同学说是 stanford的入门课程,按理说应该不是太难。作为初学者来说,本书翻译的实在不敢恭维,看了50多页是一头雾水,很多话实在是晦涩难懂。本书作用入门级课程来说,基本上涵盖了数据挖掘的各个大类,如果想细致研究某个领域的大拿就不用看了
Mining of Massive Datasets pdf epub mobi txt 电子书 下载 2024