Graphs, Networks and Algorithms (Algorithms and Computation in Mathematics) pdf epub mobi txt 電子書 下載 2024


Graphs, Networks and Algorithms (Algorithms and Computation in Mathematics)

簡體網頁||繁體網頁
Dieter Jungnickel
Springer
2004-11-29
611
USD 79.95
Hardcover
9783540219057

圖書標籤: computer_science  GraphTheory  計算機理論  數學  theory  Networks  Graph  Math   


喜歡 Graphs, Networks and Algorithms (Algorithms and Computation in Mathematics) 的讀者還喜歡




      點擊這裡下載
          


      想要找書就要到 小哈圖書下載中心
      立刻按 ctrl+D收藏本頁
      你會得到大驚喜!!

      发表于2024-08-01

      Graphs, Networks and Algorithms (Algorithms and Computation in Mathematics) epub 下載 mobi 下載 pdf 下載 txt 電子書 下載 2024

      Graphs, Networks and Algorithms (Algorithms and Computation in Mathematics) epub 下載 mobi 下載 pdf 下載 txt 電子書 下載 2024

      Graphs, Networks and Algorithms (Algorithms and Computation in Mathematics) pdf epub mobi txt 電子書 下載 2024



      圖書描述

      Preface to the Third Edition...................................VII

      Preface to the Second Edition ................................. IX

      Preface to the First Edition ................................... XI

      1 Basic Graph Theory ....................................... 1

      1.1 Graphs, subgraphsandfactors ........................... 2

      1.2 Paths, cycles, connectedness, trees . . . . . . . . . . . . . . . . . . . . . . . . 5

      1.3 Euler tours ............................................ 13

      1.4 Hamiltonian cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

      1.5 Planargraphs.......................................... 21

      1.6 Digraphs .............................................. 25

      1.7 An application: Tournaments and leagues . . . . . . . . . . . . . . . . . . 28

      2 Algorithms and Complexity ............................... 33

      2.1 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

      2.2 Representinggraphs .................................... 36

      2.3 The algorithm of Hierholzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

      2.4 How to write down algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

      2.5 The complexity of algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

      2.6 Directedacyclicgraphs.................................. 46

      2.7 NP-completeproblems .................................. 49

      2.8 HCisNP-complete ..................................... 53

      3 Shortest Paths ............................................. 59

      3.1 Shortestpaths ......................................... 59

      3.2 Finitemetric spaces .................................... 61

      3.3 Breadth first search and bipartite graphs . . . . . . . . . . . . . . . . . . 63

      3.4 Shortestpathtrees ..................................... 68

      3.5 Bellman’s equations and acyclic networks . . . . . . . . . . . . . . . . . . 70

      XVI Contents

      3.6 An application: Scheduling projects . . . . . . . . . . . . . . . . . . . . . . . 72

      3.7 The algorithm of Dijkstra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

      3.8 An application: Train schedules . . . . . . . . . . . . . . . . . . . . . . . . . . 81

      3.9 The algorithm of Floyd and Warshall . . . . . . . . . . . . . . . . . . . . . 84

      3.10 Cycles of negative length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

      3.11 Path algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

      4 Spanning Trees ............................................ 97

      4.1 Treesandforests ....................................... 97

      4.2 Incidence matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

      4.3 Minimal spanning trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

      4.4 The algorithms of Prim, Kruskal and Boruvka . . . . . . . . . . . . . 106

      4.5 Maximal spanning trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

      4.6 Steiner trees ...........................................115

      4.7 Spanning trees with restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . 118

      4.8 Arborescences and directed Euler tours . . . . . . . . . . . . . . . . . . . . 121

      5 The Greedy Algorithm ....................................127

      5.1 The greedy algorithm and matroids . . . . . . . . . . . . . . . . . . . . . . . 127

      5.2 Characterizations of matroids . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

      5.3 Matroid duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

      5.4 The greedy algorithm as an approximation method . . . . . . . . . 137

      5.5 Minimization in independence systems . . . . . . . . . . . . . . . . . . . . 144

      5.6 Accessible set systems...................................148

      6Flows ......................................................153

      6.1 The theoremsofFordandFulkerson ......................153

      6.2 The algorithm of Edmonds and Karp . . . . . . . . . . . . . . . . . . . . . 159

      6.3 Auxiliary networks and phases . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

      6.4 Constructingblockingflows..............................176

      6.5 Zero-oneflows .........................................185

      6.6 The algorithm of Goldberg and Tarjan . . . . . . . . . . . . . . . . . . . . 189

      7 Combinatorial Applications ................................209

      7.1 Disjointpaths:Menger’s theorem.........................209

      7.2 Matchings: K¨ onig’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

      7.3 Partial transversals: The marriage theorem . . . . . . . . . . . . . . . . 218

      7.4 Combinatorics of matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

      7.5 Dissections: Dilworth’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 227

      7.6 Parallelisms: Baranyai’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . 231

      7.7 Supply and demand: The Gale-Ryser theorem. . . . . . . . . . . . . . 234

      8 Connectivity and Depth First Search ......................239

      8.1 k-connected graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

      8.2 Depthfirst search ......................................242

      8.3 2-connected graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

      8.4 Depthfirst searchfordigraphs ...........................252

      8.5 Strongly connected digraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

      8.6 Edge connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

      9 Colorings ..................................................261

      9.1 Vertex colorings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

      9.2 Comparability graphs and interval graphs . . . . . . . . . . . . . . . . . 265

      9.3 Edge colorings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

      9.4 Cayleygraphs..........................................271

      9.5 The five color theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

      10 Circulations ...............................................279

      10.1 Circulations and flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

      10.2 Feasible circulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

      10.3 Elementary circulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

      10.4 The algorithm of Klein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

      10.5 The algorithm of Busacker and Gowen . . . . . . . . . . . . . . . . . . . . 299

      10.6 Potentials and ε-optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

      10.7 Optimal circulations by successive approximation . . . . . . . . . . . 311

      10.8 A polynomial procedure REFINE . . . . . . . . . . . . . . . . . . . . . . . . 315

      10.9 The minimum mean cycle cancelling algorithm . . . . . . . . . . . . . 322

      10.10 Some further problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

      10.11 An application: Graphical codes . . . . . . . . . . . . . . . . . . . . . . . . . . 329

      11 The Network Simplex Algorithm ..........................343

      11.1 The minimum cost flow problem . . . . . . . . . . . . . . . . . . . . . . . . . 344

      11.2 Tree solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

      11.3 Constructing an admissible tree structure . . . . . . . . . . . . . . . . . . 349

      11.4 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

      11.5 Efficient implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

      12 Synthesis of Networks .....................................363

      12.1 Symmetric networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

      12.2 Synthesis of equivalent flow trees . . . . . . . . . . . . . . . . . . . . . . . . . 366

      12.3 Synthesizing minimal networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

      12.4 Cut trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

      12.5 Increasing the capacities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383

      13 Matchings .................................................387

      13.1 The 1-factor theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387

      13.2 Augmenting paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390

      13.3 Alternating trees and blossoms . . . . . . . . . . . . . . . . . . . . . . . . . . . 394

      13.4 The algorithm of Edmonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400

      13.5 Matching matroids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416

      14 Weighted matchings .......................................419

      14.1 The bipartite case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420

      14.2 The Hungarian algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421

      14.3 Matchings, linear programs, and polytopes . . . . . . . . . . . . . . . . . 430

      14.4 The general case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434

      14.5 The Chinese postman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438

      14.6 Matchings and shortest paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442

      14.7 Some further problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449

      14.8 An application: Decoding graphical codes . . . . . . . . . . . . . . . . . . 452

      15 A Hard Problem: The TSP ................................457

      15.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457

      15.2 Lower bounds: Relaxations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460

      15.3 Lower bounds: Subgradient optimization . . . . . . . . . . . . . . . . . . 466

      15.4 Approximation algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471

      15.5 Upper bounds: Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477

      15.6 Upper bounds: Local search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480

      15.7 Exact neighborhoods and suboptimality . . . . . . . . . . . . . . . . . . . 483

      15.8 Optimal solutions: Branch and bound . . . . . . . . . . . . . . . . . . . . . 489

      15.9 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497

      A Some NP-Complete Problems .............................501

      B Solutions ..................................................509

      B.1 Solutions for Chapter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509

      B.2 Solutions for Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515

      B.3 Solutions for Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520

      B.4 Solutions for Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527

      B.5 Solutions for Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532

      B.6 Solutions for Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535

      B.7 Solutions for Chapter 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545

      B.8 Solutions for Chapter 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554

      B.9 Solutions for Chapter 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560

      B.10 Solutions for Chapter 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563

      B.11 Solutions for Chapter 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572

      B.12 Solutions for Chapter 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572

      B.13 Solutions for Chapter 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578

      B.14 Solutions for Chapter 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583

      Graphs, Networks and Algorithms (Algorithms and Computation in Mathematics) 下載 mobi epub pdf txt 電子書

      著者簡介


      圖書目錄


      Graphs, Networks and Algorithms (Algorithms and Computation in Mathematics) pdf epub mobi txt 電子書 下載
      想要找書就要到 小哈圖書下載中心
      立刻按 ctrl+D收藏本頁
      你會得到大驚喜!!

      用戶評價

      評分

      很全麵的圖論網絡流算法

      評分

      很全麵的圖論網絡流算法

      評分

      很全麵的圖論網絡流算法

      評分

      很全麵的圖論網絡流算法

      評分

      很全麵的圖論網絡流算法

      讀後感

      評分

      評分

      評分

      評分

      評分

      類似圖書 點擊查看全場最低價

      Graphs, Networks and Algorithms (Algorithms and Computation in Mathematics) pdf epub mobi txt 電子書 下載 2024


      分享鏈接





      相關圖書




      本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度googlebingsogou

      友情鏈接

      © 2024 twxs8.cc All Rights Reserved. 小哈圖書下載中心 版权所有