图书标签: 统计学习 数据挖掘 机器学习 统计学 数据分析 统计 Statistics 模式识别
发表于2024-06-15
统计学习基础 pdf epub mobi txt 电子书 下载 2024
《统计学习基础:数据挖掘、推理与预测》介绍了这些领域的一些重要概念。尽管应用的是统计学方法,但强调的是概念,而不是数学。许多例子附以彩图。《统计学习基础:数据挖掘、推理与预测》内容广泛,从有指导的学习(预测)到无指导的学习,应有尽有。包括神经网络、支持向量机、分类树和提升等主题,是同类书籍中介绍得最全面的。计算和信息技术的飞速发展带来了医学、生物学、财经和营销等诸多领域的海量数据。理解这些数据是一种挑战,这导致了统计学领域新工具的发展,并延伸到诸如数据挖掘、机器学习和生物信息学等新领域。许多工具都具有共同的基础,但常常用不同的术语来表达。
Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many mining tools including CART, MARS, projection pursuit and gradient boosting.
: C8/6344
评分确实翻译的一塌糊涂。。都看不下去了。。
评分名为基础,实则由浅入深。看透不容易。
评分名为基础,实则由浅入深。看透不容易。
评分这些方法很赞
读 ESL 快半年了,也读了差不多1/3,写个短评记录一下,等读完的时候再来改吧。然后简单对比下基本常见的机器学习教材。 我本科是学物理的,对于统计甚至概率论可以说是一无所知。入门的时候读的是周志华老师的《机器学习》,不过并没有读完的。一方面在家看书效率太低;另一...
评分上半部看得更仔细些,相对来说收获也更多。书的前半部对各种回归说得很多,曾经仅仅了解这些的回归方法的大概思路,但是从本书中更能了解它们的统计意义、本质,有种豁然开朗的感觉:) 只是总的来说还是磕磕巴巴的看了一遍,还得继续仔细研读才好。希望能有更深刻的领悟,目的...
评分个人觉得“机器学习 -- 从入门到精通”可以作为这本书的副标题。 机器学习、数据挖掘或者模式识别领域有几本非常流行的教材,比如Duda的模式分类,Bishop的PRML。Duda的书第一版是模式识别的奠基之作,现在大家谈论得是第二版,因为内容相对简单,非常流行,但对近20年取得统...
评分读了一个月,还在前四章深耕,在此说明一下,网上的 solution,笔记啊,我见到的,只有一个份做的最详细,准确度最高,其余的都是滥竽充数,过程推导乱来,想当然,因为该书的符号有点混乱,所以建议阅读该书的人把前面的 Notation 读清楚,比如书中 X 出现的有好几种形式,每...
评分中文翻译版大概是用google翻译翻的,然后排版一下,就出版了。所以中文翻译版中,每个单词翻译是对的,但一句话连起来却怎么也看不懂。最佳阅读方式是,看英文版,个别单词不认识的话,再看中文版对应的那个词。但如果英文版整个句子都不懂的话,那只有去借助baidu/google,并...
统计学习基础 pdf epub mobi txt 电子书 下载 2024