图书标签: 机器学习 MachineLearning 数据挖掘 计算机 计算机科学 概率 统计 人工智能
发表于2024-06-21
Machine Learning pdf epub mobi txt 电子书 下载 2024
Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, a unified, probabilistic approach. The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package--PMTK (probabilistic modeling toolkit)--that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.
Kevin P. Murphy is Associate Professor in the Department of Computer Science and in the Department of Statistics at the University of British Columbia.
感觉有点泛泛
评分内容较新及全面。
评分太执着于一个学派也不好。大坑慎入。 Important chapters 4 me: Chaps.3-12, 14, 17, 19 & 25.
评分欲仙欲死啊~~
评分简单求知好快乐 // 当初退课了,下一年wfh节奏稳的话可以再上再读
这是我为本书第四次(我买的是第六次印刷,但是是一样的)印刷写的勘误表:https://github.com/ks838/Murphy-Machine-Learning-A-Probabilistic-Perspective-Errata-and-Notes-4th-printing
评分另外的两本分别是PRML和ESLII。 这本书的成书时间最晚,刚出的时候特意花了90刀从亚马逊买的。 先说说优点:新,全! 刚说了,相对于另外两本书,由于成书时间较晚,所以涵盖了更多最近几年的hot topic,比如Dirichlet Process,在其他另外两本书中都没有提到过。 更重要的,是...
评分这本书的作者试图把机器学习进行全景式地展现,根据我有限的机器学习知识,作者把机器学习该有的都涵盖了。 这样做一个非常大的缺陷就是东西太多,讲的不够深入,许多例子都是非常笼统,没有做详细解释,就给了一个图,随便说了几句,对于一个初学者,怎么可能理解的了。 书中...
评分另外的两本分别是PRML和ESLII。 这本书的成书时间最晚,刚出的时候特意花了90刀从亚马逊买的。 先说说优点:新,全! 刚说了,相对于另外两本书,由于成书时间较晚,所以涵盖了更多最近几年的hot topic,比如Dirichlet Process,在其他另外两本书中都没有提到过。 更重要的,是...
评分哥们就是一个苦逼的本科小民工啊,在ml上完全没有受到过系统的学习,从大约1年半前开始接触机器学习至今,总共看过AG的video,看过《机器学习》和《模式分类》,后来又看了李航的《统计学习方法》,啃过《prml》,学到的东西总感觉零零散散,由于远离ml的圈子,缺乏对这个领域...
Machine Learning pdf epub mobi txt 电子书 下载 2024